Hydrogen-rich water reduces serum LDL-cholesterol levels and improves HDL functionScientific Research


Guohua Song
Min Li
Hui Sang
Chuanlong Zong
Yazhuo Xue
Shucun Qin

DOI: 10.1194

Published on: 01/07/2013

Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome


We found that hydrogen (dihydro; H2) had beneficial lipid-lowering effects in Syrian golden hamsters fed a high-fat diet. The aim of this study was to describe the effect of H2-enriched water (0.9-1.0 L/day) on serum lipoprotein levels, composition, and bioactivity in 20 patients with underlying metabolic syndrome. Serum analysis showed that drinking H2-enriched water for 10 weeks reduced serum total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol (LDL-C) levels. Western blot analysis showed that serum apolipoprotein (apo) B100 and apoE were significantly reduced. Furthermore, we found that H2 significantly improved HDL function, assessed in four independent ways, i) preventing LDL oxidation, ii) inhibiting tumor necrosis factor (TNF)-α-induced adhesion of monocytes to endothelial cells , iii) stimulated cholesterol efflux from macrophage foam cells and iv) protected endothelial cells from TNF-α-induced apoptosis. In addition, we found that drinking H2-enriched water resulted in an increase in the antioxidant enzyme superoxide dismutase, and a decrease in serum total thiobarbituric acid-reactive substances and LDL. In conclusion, H2-rich hydration can reduce serum LDL-C and ApoB levels, improve HDL function impaired by dyslipidemia, and reduce oxidative stress, which may play a positive role in preventing possible metabolic syndrome.


Taken together, our data suggest that in vivo administration of H2-water appears to reduce serum TC and LDL-C levels and improve HDL function in patients with underlying metabolic syndrome, suggesting that H2 could be used as a new drug for treatment or control. Disorders of lipid metabolism.


    • Ohsawa I.
    • Ishikawa M.
    • Takahashi K.
    • Watanabe M.
    • Nishimaki K.
    • Yamagata K.
    • Katsura K.
    • Katayama Y.
    • Asoh S.
    • Ohta S.
    Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.

    Nat. Med. 2007; 13688-694

    • Amitani H.
    • Asakawa A.
    • Cheng K.
    • Amitani M.
    • Kaimoto K.
    • Nakano M.
    • Ushikai M.
    • Li Y.
    • Tsai M.
    • Li J.B.
    • et al.
    Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    PLoS ONE. 2013; 8e53913

    • Kajiyama S.
    • Hasegawa G.
    • Asano M.
    • Hosoda H.
    • Fukui M.
    • Nakamura N.
    • Kitawaki J.
    • Imai S.
    • Nakano K.
    • Ohta M.
    • et al.
    Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance.

    Nutr. Res. 2008; 28137-143

    • Gharib B.
    • Hanna S.
    • Abdallahi O.M.
    • Lepidi H.
    • Gardette B.
    • De Reggi M.
    Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation.

    C. R. Acad. Sci. III. 2001; 324719-724

    • Song G.
    • Tian H.
    • Qin S.
    • Sun X.
    • Yao S.
    • Zong C.
    • Luo Y.
    • Liu J.
    • Yu Y.
    • Sang H.
    • et al.
    Hydrogen decreases athero-susceptibility in apolipoprotein B-containing lipoproteins and aorta of apolipoprotein E knockout mice.

    Atherosclerosis. 2012; 22155-65

    • Zong C.
    • Song G.
    • Yao S.
    • Li L.
    • Yu Y.
    • Feng L.
    • Guo S.
    • Luo T.
    • Qin S.
    Administration of hydrogen-saturated saline decreases plasma low-density lipoprotein cholesterol levels and improves high-density lipoprotein function in high-fat diet-fed hamsters.

    Metabolism. 2012; 61794-800

    • Furukawa S.
    • Fujita T.
    • Shimabukuro M.
    • Iwaki M.
    • Yamada Y.
    • Nakajima Y.
    • Nakayama O.
    • Makishima M.
    • Matsuda M.
    • Shimomura I.
    Increased oxidative stress in obesity and its impact on metabolic syndrome.

    J. Clin. Invest. 2004; 1141752-1761

    • Holvoet P.
    • Lee D.H.
    • Steffes M.
    • Gross M.
    • Jacobs Jr, D.R.
    Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome.

    JAMA. 2008; 2992287-2293

    • Ford E.S.
    • Giles W.H.
    • Dietz W.H.
    Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey.

    JAMA. 2002; 287356-359

    • Grundy S.M.
    • Brewer Jr, H.B.
    • Cleeman J.I.
    • Smith Jr, S.C.
    • Lenfant C.
    Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition.

    Circulation. 2004; 109433-438

    • Cifuentes-Goches J.C.
    • Gomez-Lopez Jde D.
    • Hernandez-Ancheyta L.
    • Flores-Fuentes S.E.
    • Inchaustegui-Arias J.L.
    • Canas-Urbina A.O.
    Hypertriglyceridemia and low HDL cholesterol as high impact factors for metabolic syndrome diagnosis in apparently healthy adults [in Spanish].

    Rev. Med. Inst. Mex. Seguro Soc. 2012; 50301-306

    • Van Lenten B.J.
    • Navab M.
    • Shih D.
    • Fogelman A.M.
    • Lusis A.J.
    The role of high-density lipoproteins in oxidation and inflammation.

    Trends Cardiovasc. Med. 2001; 11155-161

    • Tamada M.
    • Makita S.
    • Abiko A.
    • Naganuma Y.
    • Nagai M.
    • Nakamura M.
    Low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio as a useful marker for early-stage carotid atherosclerosis.

    Metabolism. 2010; 59653-657

    • Khovidhunkit W.
    • Kim M.S.
    • Memon R.A.
    • Shigenaga J.K.
    • Moser A.H.
    • Feingold K.R.
    • Grunfeld C.
    Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host.

    J. Lipid Res. 2004; 451169-1196

    • Esteve E.
    • Ricart W.
    • Fernandez-Real J.M.
    Dyslipidemia and inflammation: an evolutionary conserved mechanism.

    Clin. Nutr. 2005; 2416-31

    • Suzuki Y.
    • Sano M.
    • Hayashida K.
    • Ohsawa I.
    • Ohta S.
    • Fukuda K.
    Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract?.

    FEBS Lett. 2009; 5832157-2159

    • Jiang X.C.
    • Masucci-Magoulas L.
    • Mar J.
    • Lin M.
    • Walsh A.
    • Breslow J.L.
    • Tall A.
    Down-regulation of mRNA for the low density lipoprotein receptor in transgenic mice containing the gene for human cholesteryl ester transfer protein. Mechanism to explain accumulation of lipoprotein B particles.

    J. Biol. Chem. 1993; 26827406-27412

    • Itahara T.
    • Suehiro T.
    • Ikeda Y.
    • Inoue M.
    • Nakamura T.
    • Kumon Y.
    • Kawada M.
    • Hashimoto K.
    Serum paraoxonase and arylesterase activities in hemodialysis patients.

    J. Atheroscler. Thromb. 2000; 7152-158

    • Jiang X.C.
    • Bruce C.
    • Mar J.
    • Lin M.
    • Ji Y.
    • Francone O.L.
    • Tall A.R.
    Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels.

    J. Clin. Invest. 1999; 103907-914

    • Rikitake Y.
    • Hirata K.
    • Kawashima S.
    • Akita H.
    • Yokoyama M.
    Inhibitory effect of inducible type nitric oxide synthase on oxidative modification of low density lipoprotein by vascular smooth muscle cells.

    Atherosclerosis. 1998; 13651-57

    • McCrohon J.A.
    • Jessup W.
    • Handelsman D.J.
    • Celermajer D.S.
    Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1.

    Circulation. 1999; 992317-2322

    • Smith J.D.
    • Miyata M.
    • Ginsberg M.
    • Grigaux C.
    • Shmookler E.
    • Plump A.S.
    Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors.

    J. Biol. Chem. 1996; 27130647-30655

    • Basu S.K.
    • Brown M.S.
    • Ho Y.K.
    • Havel R.J.
    • Goldstein J.L.
    Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E.

    Proc. Natl. Acad. Sci. USA. 1981; 787545-7549

    • Mori M.
    • Sadahira Y.
    • Kawasaki S.
    • Hayashi T.
    • Awai M.
    Macrophage heterogeneity in bone marrow culture in vitro.

    J. Cell Sci. 1990; 95481-485

    • Ohsawa I.
    • Nishimaki K.
    • Yamagata K.
    • Ishikawa M.
    • Ohta S.
    Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice.

    Biochem. Biophys. Res. Commun. 2008; 3771195-1198

    • Kolovou G.
    • Anagnostopoulou K.
    • Mikhailidis D.P.
    • Cokkinos D.V.
    Apolipoprotein E knockout models.

    Curr. Pharm. Des. 2008; 14338-351

    • Geurian K.
    • Pinson J.B.
    • Weart C.W.
    The triglyceride connection in atherosclerosis.

    Ann. Pharmacother. 1992; 261109-1117

    • Ma P.T.
    • Gil G.
    • Sudhof T.C.
    • Bilheimer D.W.
    • Goldstein J.L.
    • Brown M.S.
    Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in livers of hamsters and rabbits.

    Proc. Natl. Acad. Sci. USA. 1986; 838370-8374

    • Gordon T.
    • Castelli W.P.
    • Hjortland M.C.
    • Kannel W.B.
    • Dawber T.R.
    High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.

    Am. J. Med. 1977; 62707-714

    • Kontush A.
    • Chapman M.J.
    Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis.

    Pharmacol. Rev. 2006; 58342-374



Leave a Reply