Hydrogen-rich saline reduces calpain1 expression, alleviating cardiomyocyte apoptosisScientific Research


original title: Hydrogen-rich saline alleviates cardiomyocyte apoptosis by reducing expression of calpain1 via miR-124-3p

Authors:

Jian Xiao, Wang Xi, Wei Li, Xiaofei Xue, Yufeng Zhang, Zhinong Wang

DOI: 10.1002/ehf2.14492

-

Abstract:

Aims: Molecular hydrogen has been exhibited a protective function in heart diseases. Our previous study demonstrated that hydrogen-rich saline (HRS) could scavenge free radicals selectively and alleviate the inflammatory response in the myocardial ischaemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully clarified. Methods and results: Adult (10 weeks) C57BL/6 male mice and neonatal rat cardiomyocytes were used to establish I/R and hypoxia/reoxygenation (H/R) injury models. I/R and H/R models were treated with HRS to classify the mechanisms of cardioproctective function. In this study, we found that miR-124-3p was significantly decreased in both I/R and H/R models, while it was partially ameliorated by HRS pretreatment. HRS treatment also alleviated ischaemia-induced apoptotic cell death and increased cell viability during I/R process, whereas silencing expression of miR-124-3p abolished this protective effect. In addition, we identified calpain1 as a direct target of miR-124-3p, and up-regulation of miR-124-3 produced both activity and expression of calpain1. It was also found that compared with the HRS group, overexpression of calpain1 increased caspase-3 activities, promoted cleaved-caspase3 and Bax protein expressions, and correspondingly decreased Bcl-2, further reducing cell viability. These results illustrated that calpain1 overexpression attenuated protective effect of HRS on cardiomyocytes in H/R model. Conclusions: The present study showed a protective effect of HRS on I/R injury, which may be associated with miR-124-3p-calpain1 signalling pathway.