H2 therapy reduces tendon adhesion and inflammationScientific Research

original title: Hydrogen treatment reduces tendon adhesion and inflammatory response


Jia Meng, Pan Yu, Jian Tong, Wenshuang Sun, Hui Jiang, Yicun Wang, Kaiwen Xue, Farong Xie, Hong Qian, Naicheng Liu, Jianning Zhao, Nirong Bao

DOI: 10.1002/jcb.27441



A rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects’ serum were observed. Skin fibroblasts were grouped into an NS group, H2 O2 group, H2 group, and H2 O2 H2 group. Expressions of Nrf2, CATA, and γ-GCS were also tested by Western blot analysis. 8-OHdG, GSH, MDA, and SOD of the cells were analyzed by the enzyme-linked immunosorbent assay method. The postoperative SOD activity and GSH contents were significantly reduced (P < 0.05), whereas the postoperative MDA level was significantly increased (P < 0.05). Similarly, the postoperative HS group showed significantly higher SOD activity and GSH contents (P < 0.05) but lower MDA (P < 0.05) compared with the postoperative NS group. MDA and 8-OHdG were significantly decreased in hydrogen-rich medium, while SOD and GSH were increased. The expression of Nrf2, CATA, and γ-GCS in antioxidant system were reduced after H2 O2 processing, which were restored after the application of hydrogen-rich medium. Hydrogen water can reduce tendon adhesion after tendon repairing and prohibit excessive inflammatory response, which could be associated with the activation of the Nrf2 pathway.