H2 treatment’s impact on Sepsis-Associated encephalopathy in mice via gut microbiotaScientific Research

original title: Effect of molecular hydrogen treatment on Sepsis-Associated encephalopathy in mice based on gut microbiota


Qingqing Han, Yuanyuan Bai, Chunjing Zhou, Beibei Dong, Yingning Li, Ning Luo, Hongguang Chen, Yongbao Yu

DOI: 10.1111/cns.14043



Introduction: In our experiments, male wild-type mice were randomly divided into four groups: the sham, SAE, SAE + 2% hydrogen gas inhalation (H2 ), and SAE + hydrogen-rich water (HW) groups. The feces of the mice were collected for 16 S rDNA analysis 24 h after the models were established, and the serum and brain tissue of the mice were collected for nontargeted metabolomics analysis. Aim: Destruction of the intestinal microbiota is a risk factor for sepsis and subsequent organ dysfunction, and up to 70% of severely ill patients with sepsis exhibit varying degrees of sepsis-associated encephalopathy (SAE). The pathogenesis of SAE remains unclear. We aimed to explore the changes in gut microbiota in SAE and the regulatory mechanism of molecular hydrogen.

Results: Molecular hydrogen treatment significantly improved the functional outcome of SAE and downregulated inflammatory reactions in both the brain and the gut. In addition, molecular hydrogen treatment improved gut microbiota dysbiosis and partially amended metabolic disorder after SAE. Conclusions: Molecular hydrogen treatment promotes functional outcomes after SAE in mice, which may be attributable to increasing beneficial bacteria, repressing harmful bacteria, and metabolic disorder, and reducing inflammation. Keywords: gut microbiota; hydrogen gas (H2); hydrogen-rich water (HW); molecular hydrogen treatment; sepsis-associated encephalopathy (SAE).