Impact of H2 on placental function in trophoblast cellsScientific Research


original title: Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells

Authors:

Zhong Guan, Huai Li, Li Guo, Xiang Yang

DOI: 10.1007/s00404-015-3647-8

-

Abstract:

Aim: This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro.

Methods: Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR.

Results: Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P < 0.05), but not by 500 μmol/L molecular hydrogen (P > 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P < 0.05), but not by molecular hydrogen (0-500 μmol/L), as validated by real-time RT-PCR. But the secretion of hCG was both inhibited by 50-500 μmol/L molecular hydrogen and high levels of vitamin C and E, separately or combined.

Conclusion: High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.